
 
Predicting Bike Share Demand in Chattanooga, USA 

Introduction  
 
Bike sharing has become an increasingly popular mode of transportation in cities all over the world. These systems allow 
people to rent bikes on a short-term basis, often for a small fee, and use them to get around the city.While bike sharing 
has many benefits for cities, it also faces challenges such as operational issues due to the limitations of docks at stations. 
Cities can leave a lot of money on the table by not operating their bike systems effectively because potential customers 
will not be able to rent bikes if there are none available or no available docks to leave a bike after a ride. It is in the city’s 
best interest to balance between keeping stations equipped and docks open without having to build dozens of docks at 
each location, which would be financially infeasible. Bike system administrators could be more proactive about the 
placement of bikes to avoid availability issues. For example, they could prompt users with incentives to leave their bike at 
a station that is running low on bikes, or their staff can take open up availability at docks of stations that are popular 
destination. These measures require timely, accurate predictions of bike inventory at stations.  
 
The aim of this study is to forecast bike demand in the City of Chattanooga, specifically the change in bike inventory at 
every hour at popular bike dock stations. Chattanooga, Tennessee, USA launched its bike sharing system, called "Bike 
Chattanooga," in July 2012. Initially offering 30 stations and 300 rental bikes, Bike Chattanooga has subsequently grown 
to 42 stations and more than 400 bikes. Chattanooga’s bike sharing program is particularly interesting because it was 
established in collaboration with Outdoor Chattanooga, an outdoor center that is a main attraction for tourists. This means 
that the city has a lot to gain in terms of tourist ridership by balancing demand at the stations near Outdoor Chattanooga 
and the partnership could ease with bike redistribution by taking advantage the center’s staff on ground. For this reason, 
Bike Chattanooga is an ideal example of how improving operations from demand predictions could be very advantageous 
for cities.  

 
Data 
 
The primary data for this study is from the City of Chattanooga’s Open Data Portal (City of Chattanooga). The dataset 
includes all the bike trips from the launch of the program until June 24, 2022, and specifies the start and end times, the 
start and end stations/locations, and the length of the trip. The analysis uses data starting from the end of 2020. 
Altogether there are 135,639 trips. The data was cleaned by dropping any trips lasting for less than a minute (8835 trips 
or 6.5%). These trips tended to end in the same station and were assumed to be mistakes or tests by the user. Trips that 
were missing an end station (11 trips) were also dropped from the dataset. 
 
The data was resampled to hourly data and grouped by start station and end station. The difference between the number 
of trips starting and ending at a station every hour was calculated to find the “change in bike inventory”, the variable of 
interest. Ideally, the change in bike inventory will be near 0, which means that the number of bikes being taken from the 
station is similar to the number of bikes being returned to the station that hour. Weather data was also gathered to use as 
a feature in modelling under the hypothesis that weather conditions would affect riders’ decision to cycle. Specifically, the 
total precipitation in the 3 preceding hours was collected using the Meteostat API which hosts data provided by the 
National Oceanic and Atmospheric Administration.  
 
All data collection, cleaning, feature engineering, analysis and modelling in this study was conducted in Python. The code 
and comprehensive results can be found in the accompanying Jupyter notebooks. 

 
Exploratory Data Analysis 
 
Figure 1 shows a map of the 41 bike stations that were operating throughout the duration of the dataset based on their 
number of starting trips. Most stations are in downtown Chattanooga and had about 2000 – 4000 trips. Station 1299 has 
been labelled because it was the starting point of the most trips by far with over 15,000 trips. Station 1299 is the station 
outside Outdoor Chattanooga, the attraction for adventure activities in the city.  
 
Figure 2 below displays bar charts that show the number of trips starting and ending at each station. Station 1299 is not 
only the starting location of most trips but also the most popular ending station. Given that this station is driving much of 
the demand in the city, and it located at popular stop for tourists who are great potential customers, this study will focus 
on predicting the demand, specifically at Station 1299.  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Investigating Station 1299  
 
The mean length of rides from Station 1299 was 44 minutes and the average was 36 minutes, suggesting that 
aggregating the data hourly would be suitable, so the study will focus on hourly data prediction. The calculation of the 
change in bike inventory (number of trips starting minus number of trips ending at station) showed that overall 65% of the 
time the change in inventory was zero which is ideal. However, when restricting the data to the most active hours of the 
day including the opening times of Outdoor Chattanooga (9am to 5pm), the change in inventory is negative 26.5% of the 
time. This could be alarming because recurrent negative inventory suggests unavailability of bikes at the docks which 
could frustrate potential riders which underscores the need to predict bike demand.  
 
Figure 3 shows that activity in Station 1299 is driven by the same 5 stations: Station 1319, 1323, 1435, 1303 and 1299 
itself. These stations were both the most popular destinations and origins for trips starting and ending at Station 1299. 
This information is useful in considering other variables to include in the models to predict the change in bike inventory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 1B depicts a map zoomed in to Northern Chattanooga near the Tennessee River, showing all the stations near 
Station 1299. The map shows that the 4 other stations driving the activity at Station 1299 are nearby. However, it also 
suggests that there isn’t a distance-based correlation between the stations and how they drive demand because several 
other stations are equally or even closer to Station 1299 and their activity is fairly unrelated to that of Station 1299. For 
this reason, a times series model that also includes data from other relevant stations (over a spatial one) seemed more 
suitable and was used in the analysis.  
 

Statistical Exploratory Data Analysis 
 
For the most part, the change in inventory data is within -14 and 14 except for a few outliers mainly on the 11th and 12th 
and November 2021. From a visual analysis, the series appears stationary. However, additional statistical tests are 
conducted to test for stationarity. The Augmented Dickey-Fuller (ADF) test was conducted to test for the presence of a 
unit root which is an indication of non-stationarity in a time series. If the test statistic is less than the critical value, then the 
null hypothesis is rejected, and the time series is considered stationary (Dickey, 1979). The result of the test was a test 
statistic of 22 with a p-value less than 0.0001, indicating that our data was stationary, and no differencing would be 
required.  
 
Next, the autocorrelation and partial autocorrelation functions were used to measures the correlation between the time 
series and its lagged values. Figure 5 displays the corresponding correlograms.  
 

 
Figure 5 

 
From the function plots, the first 7 lags are important in predicting the change in the bike inventory though the first 3 lags 
are the most useful. Additionally, there appears to be some seasonality as significant lags appear around every 24-26 
hours which means the value at that hour in the previous days is also correlated with the current value.  
 

Seasonal Autoregressive Integrated Moving Average (SARIMA) 
 
Given the seasonal trends observed during the exploratory data analysis, a seasonal autoregressive integrated moving 
average (SARIMA) model was used.  
 
SARIMA (p,d,q) (P,D,Q)s is defined as  
 
Y(t) = c + φ1y(t-1) + ... + φpy(t-p) - θ1e(t-1) - ... - θqe(t-q) + ε(t) + Φ1y(t-s) + ... + ΦPy(t-ps) - Θ1e(t-s) - ... - ΘQe(t-qs) 
 
where Y(t) is the value of the change in bike inventory at time t, φ1, ..., φp are the autoregressive (AR) parameters, y(t-1), 
..., y(t-p) are the lagged values of the time series, θ1, ..., θq are the moving average (MA) parameters, e(t-1), ..., e(t-q) are 
the lagged values of the errors, ε(t) is the error or noise at time t, Φ1, ..., ΦP are the seasonal autoregressive (SAR) 
parameters, y(t-s), ..., y(t-ps) are the lagged values of the time series at seasonal intervals, Θ1, ..., ΘQ are the seasonal 
moving average (SMA) parameters, e(t-s), ..., e(t-qs) are the lagged values of the errors at seasonal intervals and p, d, q, 
P, D, Q, and s are the orders of the AR, differencing, MA, SAR, seasonal differencing, and SMA components, 
respectively. 
 
Several variations of the SARIMA model were considered. From the ACF and PACF plots, an AR order of 4 and MA order 
of 3 would be considered as well as an AR model using all the first 7 lags. The model variations used in the study 
included SARIMA(4,0,0)(1,1,0)24, SARIMA(0,0,3)(0,1,1)24, SARIMA(7,0,0)(1,1,0)24,  SARIMA(4,0,0)(1,1,1)24, 

SARIMA(4,0,1)(1,0,1)24. Models including both high-order AR and MA orders were attempted but not documented as 
these failed to converge. All models had all coefficients as statistically significant at the 5% level. 

 

The models were trained with data from Jan 1st to May 28th and used predictions were made for the next 24 hours using 
the normal forecasting of the model as well as a rolling prediction. For every new prediction in the rolling prediction 
approach, the model was trained again with data including the additional ground-truth data for the previous hour before 



the prediction was made. This scenario is more representative of the real-world scenario where the bike sharing 
operators would have information on the true demand in the previous hour to make their forecast and decisions.   
 
Table 1 below shows the resulting RMSE values of each of the SARIMA models rolling predictions.  
 

SARIMA Model Variant RMSE 

SARIMA(4,0,0)(1,1,0)24 3.6902 

SARIMA(0,0,3)(0,1,1)24 3.6195 

SARIMA(7,0,0)(1,1,0)24,  3.6956 

SARIMA(4,0,0)(1,1,1)24 3.6165 

SARIMA(4,0,1)(1,0,1)24. 3.6209 
Table 1: RMSE for SARIMA model variants 

 
The RMSEs values of the models are comparable and are quite large. However, plotting the predictions shows a different 
story. Figures 6A to 6E show the plots of the predictions (orange) and the true values (blue). The MA seasonal order 
appears to be what is driving the prediction values. Figures 6A and 6C whose predictions are almost identical both have 
seasonal MA orders of 0, while Figures 6B, 6D and 6E which have seasonal MA orders of 1 have similar predictions. 
Another thing noted from corresponding RMSEs and plots is that although SARIMA(4,0,0)(1,1,0)24  (Figures 6A) and 
SARIMA(7,0,0)(1,1,0)24 (Figures 6B) both follow the pattern of the true values better than the other models, their RMSEs 
are higher because predicting a value of 0 for the whole time series overall averages to lower residuals since the change 
in bike inventory is centered around 0.  
 

 
Vector Autoregressive Model (VAR) 
 
In order to improve the accuracy of the model, features from nearby stations that were drivers of the activity around 
Station 1299 were included using a vector autoregressive model. The VAR model is a multivariate extension of the 
autoregressive model that assumes that the values of all the variables in the model are jointly determined by their own 
past values and the past values of the other variables in the model. 
 
The VAR model is defined as: 
 
Y(t) = c + A1Yt-1 + A2Yt-2 + ... + AnYt-n + εt 
 
where Y(t) is a vector of n endogenous variables at time t, c 
is a constant vector, A1, A2, ..., An are n × n matrices of 
coefficients, εt is a vector of error terms with mean zero and 
constant covariance matrix Σ, and p is the number of lags 
used in the model (Lütkepohl, H., 2005). 
 



The time series for the change in inventory at Stations 1319 and 1435 as well as the precipitation for the past 3 hours 
were attempted to be included in the model. Figure 7 shows the values for Station 1299 and Stations 1319 and 1435 for 
the week following December 31st, showing that the values follow similar patterns. 

 
The Adfuller test was run on the 3 time series and the results rejected the null hypothesis, meaning that all time series 
were stationary.Next the granger causality test was conducted to test whether the lagged values of the time series help 
predict the current value of the change in bike inventory at Station 1299 (Lütkepohl, H., 2005). The test was conducted for 
8 lags. Below are the resulting p-values in Table 2. The results show only that the precipitation lags correlations were not 
statistically significant. For this reason, precipitation time series was not included the VAR model.  
 

Time Series Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 

Precipitation 0.531 0.613 0.605 0.680 0.700 0.801 0.854 0.892 

Station 1319 <0.0001 <0.0001 <0.0001 0.001 <0.0001 <0.0001 <0.0001 <0.0001 

Station 1435 0.006 <0.0001 <0.0001 <0.0001 <0.0001 0.001 0.002 0.001 
Table 2: P-values for the Granger Causality Test 

 
The select order function (which shows the orders with the 
lowest AIC and BIC values) was used to choose the order for 
the model. A lag of 5 was chosen as this had the lowest AIC 
value. All the coefficients of the resulting model were statistically 
significant.  
 
The model was used to make rolling predictions for the next 48 
hours. The result was an RMSE of 3.85 which was higher than 
those of the SARIMA models. Figure 8 shows the plot of the 
predictions of the VAR model. The model underperformed in 
predicting bike inventory. This might be as a result of the lack of 
the daily seasonal component that seems to play a main role in 
forecasting in the SARIMA models. 
 
 

Random Forest Model 
 
To provide more flexibility than the traditional statistical time series 
model, a random forest model was implemented. Random forest is 
a machine learning algorithm that uses an ensemble method to 
combine multiple decision trees to create robust prediction models 
(Breiman, 2001). One of the key advantages of the random forest 
model is its ability to handle noisy and high-dimensional data, 
allowing for the inclusion of additional features in the model than 
previously.  
 
Two variations of the random forest model were run. Both models 
included the 5 lags for Station 1299, Station 1319, and Station 
1435, a categorical variable for the time of the day (either early 
morning, morning, mid-noon, afternoon, evening, night) and a 
categorical variable whether the day was a national holiday or not. 
Additionally, the first model had a categorical variable for the day of the week while the second model replaced this 
feature for a binary variable of whether it was a weekday or weekend. Hyperparameter tuning was conducted using grid 
search cross-validation. For the first model the best parameters were a max depth of 9 and 100 decision trees, while for 
the second they were 9 and 200 respectively.  
The models were used to predict the hourly change in bike inventory at Station 1299 for a week. Figure 9 shows the 10 
most important features for the models. The lag values for the inventory at the stations were the most important 
predictors. 
 
Both models had similar performance with RMSE values of 2.652 and 2.651 respectively. So far these are the smallest 
RMSE values found. However, Figures 10 and 11 shows that these models don’t necessarily follow the pattern well and 
in general are heavily underpredicting the magnitude of the true values. The residuals were plotted to examine if there 
were any trends, but the residual values are centered around 0 as shown in the figures. 
 



   
 

Figure 10: Predictions and Reisduals for First Random Forest Model 

 

 
 

Figure 11: Predictions and Residuals for Second Random Forest Model 

 

 
Recurrent Neural Network: Long Short-Term Memory (LSTM) 
 
The final model attempted was LSTM, a type of recurrent neural network (RNN) that is particularly useful for time series 
prediction because it can learn long-term dependencies in the input sequence given its ability overcome the vanishing 
gradient problem, and can adapt to changing patterns and trends over time (Hochreiter, S., & Schmidhuber, J., 1997).  
 
Table 3 shows the summary of the LSTM model used for predictions. It includes 3 LSTM layers as well as a dropout layer 
to reduce overfitting and a final dense layer. Like in previous models, the model was trained on the hourly values form 
Jan 1 2022 to May 15 2022 while the data day from May 15 to 29 (14 days) was used for validation and the week 
following May 29 was used for testing.  
 

The model only uses the previous values from Station 1299. Two 
versions of this model was run, one using 4 lag values (and a 
batch size of 16) and one using 24 lag values (and a batch size of 
8) to hopefully capture the daily seasonality. The adam optimizer, 
mean absolute error metric, and learning rate of 0.0001 was used. 
The number of epochs was determined by a callback stopping the 
training if the validation loss did not improve after 3 epochs.  
 
The results of the two univariate models were similar with the 24-
lag model and 4-lag model having minimum validation loss values 
of 5.092 and 5.270 and RMSE values of 2.235 and 2.303 
respectively. Figure 12 shows the plots of the predictions of the 
models. The LSTM did not perform as well as expected. Similar to 
the random forest model, it underpredicts the magnitude of the 
values. Note that additional models were run using scaled values 
but these models performed worse and their results can be found 
in the jupyter notebooks). 

 
 

Figure 12: Predictions for 4-Lag LSTM (left) and 24-lag LSTM (right) 



Hoping to improve the accuracy, a multivariate LSTM (including the time series from Station 1319 and Station 1435) was 
also run. The multivariate model was run with 5 lags to 
match the random forest model and VAR models after 
observations of little improvement using the 24-lag 
univariate model. All other parameters were the same 
used for the univariate 4-lag LSTM.  
 
The minimum validation loss of this model was 5.261 
and it had an RMSE of 2.290 which was comparable to 
that of the univariate model and as seen in Figure 13, 
the prediction plot was very similar to that of the 
univariate LSTM models.  
Overall, while LSTM had the lowest RMSE values, its 
results were still lower than expectations as they were 
a minimal improvement to the previous models. 
 

Discussion and Conclusion 
 
The aim of this study was to forecast the hourly change in bike inventory within the Chattanooga bike sharing system. 
The analysis focused on Station 1299, the most popular station within the network which is at a tourist attraction and has 
much potential for revenue increase from improvement. Four models were attempted for the predictions: seasonal 
autoregressive moving average (SARIMA) model, Vector autoregressive model (VAR), random forest, and Long Short-
Term Memory (LSTM) Recurrent neural networks.  
 
While for the most part the RMSE values reduced the complexity of the model, overall, the improvements to the model 
were minimal and the accuracy of all the models were not very high as the models repeatedly underpredicted the 
absolute magnitude of the true values, forecasting values near 0 for most of the hours. One of the reasons for this 
phenomenon might be the fact that a majority of the values in the change in bike inventory is 0. This is actually an ideal 
situation since it means that most of the time the number of bikes being picked up and dropped of at the station are 
equal. Consequently, the bike sharing system might generally be already self-balancing to some extent.  
 
Nevertheless, future work could attempt other approaches to improve predictions. For example, given that the true values 
seem to alternate between times where the bike inventory change is stagnant at 0 and others with large fluctuations, a 
Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model could be useful because it models the 
variance of a time series as a function of its past values and past errors (Engle, 1982). Alternatively, the modeling could 
be changed from a regression problem to a classification problem trying to classify periods of high negative values, high 
positive values and zero values and the analysis could attempt forecasting with different data aggregation levels such as 
every 20 mins or every 4 hours. Furthermore each of the models could be possibly be improved with additional data such 
as integrating seasonal data with the vector autoregressive model, or adding the time series of the other stations driving 
the activity at Station 1299 (since these models only included the first 2 stations), or trying out other recurrent neural 
networks such as the Gated Recurrent Unit (GRU) model.  
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