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Who Gets Green in Philadelphia? A Spatial Analysis of Philadelphia’s Residential Tree Program 

 
 
Abstract 
 
This study evaluates the equity of the tree distribution of Philadelphia’s yard tree program run 
by TreePhilly. The assessment focuses on the program’s ability to counteract the urban heat 
island effect based on land surface temperatures calculated using Landsat 8 satellite imagery as 
well as zoning specifications from the City of Philadelphia’s land use data, and socioeconomic 
characteristics from the American Community Survey on the census block group level.  
Disparities were identified using mapping, regression analysis, and spatial econometric models 
to determine the relationships between tree distribution and important factors such as 
temperature, race, income, and property characteristics. Overall, the study found that 
residential tree distribution was not equitable with regards to combatting the urban heat island 
effect and that more trees per square feet were planted in census block groups with higher 
white populations and lower density zoning classifications. This assessment will inform the local 
government on the effectiveness of its program and facilitate TreePhilly in determining where 
to target its outreach. 

 

Keywords: Philadelphia, Urban heat islands, Greenspace, Spatial regression, Environmental 
justice, Tree distribution, Satellite imagery  
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1. Introduction 
 

Cities are increasingly suffering from the Urban Heat Island (UHI) effect which causes 

metropolitan areas to have significantly higher temperatures than surrounding rural and 

suburban regions (Voogt and Oke, 2003). Considering the many benefits of greenspace, 

including urban heat island mitigation, the City of Philadelphia (subsequently also referred to as 

the City) has undertaken programs to expand urban vegetation. In partnership with the 

Philadelphia Horticultural Society, the City supports the LandCare program which cleans, 

greens, and maintains vacant lots and currently includes 12,000 lots (Philadelphia Horticultural 

Society, 2021). Philadelphia’s Parks and Recreation has also led the TreePhilly program since 

2012 (Parks and Recreation, 2021). The Street Trees program involves the deployment of trees 

on public streets while the Yard Trees Program offers free trees to residents to plant and 

maintain on their private properties.  

This paper attempts to close the gap in the literature about the distribution and equity 

of Philadelphia’s private urban vegetation programs and their impact in reducing the urban 

heat island effect by evaluating the Yard Trees program. While there is substantial literature 

focusing on the effect of Philadelphia’s urban vegetation programs on crime, health, and 

perceptions of safety (South et al., 2018, Branas et al., 2018), there is little research 

surrounding the relationship of Philadelphia’s programs and the urban heat island effect. 

Generally, the scholarship on the effectiveness of municipal greenspace programs is focused on 

the deployment of vegetation in public settings. Private distribution services are difficult to 

implement and monitor because they depend on the residents’ requests and actions to achieve 

the program’s goals (Locke and Grove, 2016). Prior research that has evaluated the Yard Tree 
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program found it to be equitably distributed (Locke, Fichman and Blaustein, 2015), but this 

research was conducted within the first 2 years of its formation and the program has currently 

run for 9 years. Additionally, subsequent research on tree distribution programs for private 

property have only investigated them qualitatively (Nguyen et al., 2017).  

While the planting and maintenance of trees under the Yard Trees service is conducted 

on private property, an assessment of the program will be valuable to the public sector given 

that it is organized and funded by the City of Philadelphia as a response to its Greenworks 

Vision which set the goal of increasing the tree canopy by 30% in all Philadelphia 

neighborhoods (Greenworks Philadelphia, 2009). This research will identify what 

neighborhoods have benefitted the most from the program and those that are taking up the 

service the least while comparing these areas to those that were suffering most from the urban 

heat island effect at the beginning of the program. It will also examine relationships between 

these neighborhoods and socioeconomic factors and housing characteristics to identify possible 

reasons for resistance to the program. The evaluation will gauge the equity of the distribution 

of the trees which will inform the local government on the effectiveness of its allocation of 

funds to the program and facilitate TreePhilly in determining where to target its outreach. By 

providing information on underserved neighborhoods and potential barriers to the service, this 

research can improve Philadelphia’s future urban vegetation plans for mitigating urban heat 

island effects on residential properties and increasing the tree canopy across the city.  

 
2. Literature Review 

The Urban Heat Island (UHI) effect is a phenomenon that causes metropolitan areas to 

have significantly higher temperatures than surrounding rural and suburban regions (Voogt and 
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Oke, 2003). The effect tends to result from the high density of buildings and impervious 

pavements with low albedo retaining solar energy in metropolitan areas (Mohajerani et al., 

2017). In some cities, temperature differences have been found to be up to 5.4°F (3°C) during 

the day and 22°F (12.2°C) at nighttime (Wong, Akbari, Bell, and Cole, 2011), while mid-latitude 

urban areas replacing temperate forests have been found to have temperature differences 

reaching 6-9°C or 10.8-16.2°F (Imhoff et al., 2010). There is conflicting research on the 

relationship between density and urban temperatures. For example, Schwarz and Manceur 

(2014) concluded that compact urban form increases urban heat island effects depending on 

how surface temperatures are measured. On the other hand, other studies have found that 

urban sprawl results in increased rates of extreme heat events (Stone, Hess and Frumkin, 2010). 

Nonetheless, as the world urbanizes, the urban heat island effect will increasingly become 

important in all cities. 

Urban heat islands have profound effects on individuals and the environment. They 

have been linked to several negative health issues including asthma, strokes, dehydration, 

exhaustion, and even mortality (Kovats and Hajat, 2008). In fact, heat-related mortality is the 

most common weather-related cause of mortality. Urban heat islands also contribute to 

increased energy demand and strains on energy systems due to greater air conditioning usage 

(Akbari and Hashem, 2005, Wong, Eva, H. Akbari, R. Bell, and D. Cole., 2011). Unfortunately, 

urban residents experience these consequences disproportionately. Studies show that low-

income, elderly, and racial and ethnic minority groups experience higher levels of mortality due 

to urban heat islands (Harlan et al., 2006, Johnson and Wilson, 2009).  



6 
 

Urban heat island effects can be mitigated by several mechanisms. One of the most 

effective methods is through urban green space. Various researchers have found that parks and 

vegetation reduce surface temperatures (Cao et al., 2010, Li et al., 2013, Zhou et al., 2011). Park 

Cool Islands, green spaces within urban islands, are able to cool through transpiration and 

shading. In cities where larger park cool islands are possible such as Sacramento, temperatures 

can drop by 5-7°C in areas with irrigated greenspace (Spronken-Smith and Oke, 1998). While 

Chow, Pope, Martin, & Brazel (2011) found temperatures fall between 0.7–3.6°C in Tempe, 

Arizona, Declet-Barreto et al. (2013) found surface temperatures fall by up to 8.4 °C in Phoenix, 

Arizona in park cool islands. Studies have also found correlations between higher neighborhood 

tree cover and lower heat-related ambulance calls during extreme heat events (Graham et al., 

2016). Urban gardens are becoming increasingly popular and have been found to reduce 

temperatures between the spring and autumn and reduce energy consumption (Tsilini et al., 

2014). Additionally, they provide non-heat-related benefits such as increasing access to healthy 

food, community development, and psychological wellness (Poulsen et al., 2014). 

Urban heat island mitigation infrastructure is also unequally distributed in multiple 

cities. Apparicio et al. (2016), Flocks et al. (2011), and Landry and Chakraborty (2009) found 

disproportionate distribution of greenspace in Montreal, Miami, and Tampa respectively. Low-

income citizens tend to live in denser areas of low albedo and higher temperatures due to less 

vegetation.  As a result, these residents have a higher demand for air conditioning, contributing 

to energy poverty (Coseo, 2013), and they are less likely to benefit from the associated social 

benefits of greenspace (Declet-Barreto et al. 2013).  
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This study’s city of interest, Philadelphia, has been greatly affected by the UHI effect, 

experiencing various “extreme weather events” over the past 3 decades (Weber, 2015). The 

city also suffers from a considerable amount of vacant land. As of 2015, the city had over 

40,000 vacant lots, and a study found that lower-income neighborhoods had a significantly 

larger number of vacant lots (Pearsall, 2017). Previously, Uejio et al. (2011) found that 

Philadelphia neighborhoods with higher levels of heat-related mortality had greater 

proportions of African Americans and low value homes. While greenspace development has 

been on the rise in Philadelphia, urban gardens in low-income neighborhoods have faced 

barriers to acquiring and maintaining vacant land (Meenar and Hoover, 2012). 

Philadelphia has established urban vegetation programs to combat the UHI effect. The 

City supports the LandCare program to green vacant lots as well as Parks and Recreation’s 

TreePhilly program that plants trees on public streets through its Street Tree program and on 

private property through its Yard Trees Program. The yard trees on private property are usually 

requested by Philadelphia residents who contact TreePhilly through the website, calls, or during 

informational campaigns occasionally run by the organization in different neighborhoods. 

TreePhilly staff facilitate planting and provide information to residents about how to grow and 

maintain the tree (TreePhilly). 

Research shows there has been a positive impact from some of the City of Philadelphia’s 

greening programs. A study found that the LandCare program has contributed to urban island 

effect mitigation with LandCare lots being 3.21°F cooler on average than vacant lots across the 

city (Pearsall, 2017). In 2012, Heckert and Mennis found that properties surrounding greened 

vacant lots had a greater increase in value than properties surrounding non-greened vacant 
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lots. More recent studies also found relationships between the LandCare program’s projects 

and positive effects on mental health, blight, crime, and perceptions of safety (South et al., 

2018, Branas et al., 2018). Kondo et al.’s recent study (2020) predicts that the city will prevent 

403 premature deaths annually between 2014 and 2025 if it reaches its 2025 goal of 30% tree 

canopy coverage. 

Given the rise of extreme heat events in Philadelphia, it is important that programs are 

locating urban vegetation interventions in areas that will maximize and distribute their benefits 

equitably as other cities raise environmental justice concerns. For example, research assessing 

the Detroit Future City Strategic Framework pointed to its green infrastructure sites’ inability to 

address heat-related socioeconomic vulnerability (Lino and Reames, 2019). Therefore, 

evaluating the equity Philadelphia’s green programs is essential to optimize the mitigation of 

the city’s urban heat island. 

 
3. Data 
 

In order to identify what parts of the city were most susceptible to the urban heat island 

at the beginning of the TreePhilly program, this study uses land surface temperatures as a 

proxy. Land surface temperature (LST) is calculated using high spatial resolution satellite 

imagery and is often used as a measure in urban heat island studies (Huang, Zhou, & 

Cadenasso, 2011). LST points to the intensity of the urban heat island effect as a function of low 

albedo due to lack of vegetation, although it is not a perfect indicator of urban heat island 

effects (Zaeemdar and Baycan, 2017).  

This study employs imagery from Landsat 8 data, specifically Band 10 and Band 11 

(Thermal Infrared) to calculate the temperature in degrees Fahrenheit in each census block 
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group. The satellite image utilized was collected on July 19, 2013 and resampled by the US 

Geological Survey. This image was chosen based on filtering by season, year, and cloud cover, 

and it was accessed by the Google Earth application programming interface. The study uses 

Landsat 8 data from the earliest available year (the closest year to the 2012 start of the 

TreePhilly program) that was collected on a typical summer day with less cloud cover to derive 

the land surface temperatures more accurately on a warm Philadelphia day. 

The outcome of interest will be the residential trees that were planted in each census 

block group through the city’s program. A dataset including all 17,834 yard trees, their location, 

and year planted from the inception of the program to September 2021 and retrieved from 

TreePhilly. Unfortunately, the dataset does not include information about the current status of 

the trees, households who requested but did not receive one, or how the households learned 

about the program. 

To account for differences in neighborhood layout and zoning throughout the city, the 

study also employs Philadelphia’s Land Use dataset downloaded from Open Data Philly. The 

shapefile includes updated planning information assigning each city parcel to 1 of 9 

classifications such as residential, commercial, park or vacant land, as well 16 sub-classifications 

including residential low density or commercial business & professional. Specifically, this 

research utilizes information about 9 of the 16 classes: residential low/medium/high density, 

commercial consumer/business & professional/mixed residential, park/open space/cemetery, 

and vacant land. 

Finally, demographic information on the census block group level was retrieved from 

the American Consumer Survey (ACS) 2014-2018 5-year estimates. These estimates were 
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chosen because they fall in the center of the 2012-2021 period of the yard tree program. The 

demographic variables of interest were percent of white residents and median household 

income.  

 
4. Methodology 

4.1 Data Manipulation  

The process and equations used to calculate LST were adapted from Twumasi et al.’s 

2021 study using Landsat-8 satellite data to compare LST of 2 cities in Ghana. 

LST was computed using the following equation: 

  

where Ts is the LST in Celsius (˚C), BT is satellite brightness temperature (˚C), λ is the wavelength 

of emitted radiance and ελ is the emissivity.  

 The following variables needed to derive LST were calculated as follows:  

• Land surface emissivity was approximated as ελ = 0.004Pv + 0.986 where Pv is the 

proportion of vegetation. 

• The proportion of vegetation was calculated using the equation: 

 

where NDVI is the normalized vegetation index and NDVIv and NDVIs are maximum and 

minimum NDVI respectively. 

• The normalized vegetation index (NDVI) was calculated using the following equation: 

 

where NIR represents the near-infrared band (Band 5) and R represents the red band 

(Band 4). 
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• BT was retrieved using the brightness temperature utility function of the RIO-TOA 

application programming interface in Python. 

• ρ = h !
"

  where σ is the Boltzmann constant (1.38 × 10−23 J/K), h is Planck’s constant 

(6.626 × 10−34 J s), and c is the velocity of light (2.998 × 108 m/s).  

 

LST was calculated for both Bands 10 and 11 and averaged then converted to 

Fahrenheit. The temperature assigned to each census block group was calculated using zonal 

statistics to average pixel values across each block group. The mean temperature across all 

census block groups in the dataset was 75.7 degrees Fahrenheit, ranging from 37.1 to 85.8 

degrees Fahrenheit. 

The datasets of the yard trees, ACS demographic information, and land use were 

combined to form variables for modeling. Summary statistics for the variables can be found in 

Table 1. From the land classification groups, 7 variables were created, including percent of the 

census block group zoned as Residential low density, Residential medium density, Residential 

high density, Commercial 1 (combination of commercial business/professional and commercial 

consumer), Commercial 2 (commercial mixed residential), Park/Open (combination of 

park/open space and cemetery) and Vacant. There were initially 1336 census block groups. 

After eliminating census block groups without demographic information from the ACS or any of 

the 7 mentioned zoning classifications there were 1202 census block groups left in the dataset.  
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4.2 Hypotheses 

Because this study aims to assess the equity of the yard tree distribution program 

especially with regards to its efficiency in addressing heat inequities in Philadelphia, a major 

point of interest will be the initial temperatures of the areas where trees were planted. It is 

hypothesized that census block groups with higher mean temperatures will receive a higher 

number of trees. It is expected that areas suffering most from the urban heat island effect will 

be engaged with more outreach in accordance with Parks and Recreations goals. This 

observation would signify that the city is distributing trees fairly, at least with regards to urban 

heat mitigation. It is predicted that census block groups with a higher percentage of white 

residents and higher incomes will have received more trees. This hypothesis is based on the 

expectation that these populations have better access to resources and information to request 

yard trees as well as unequal distribution of greenspace found in other cities (Apparicio et al., 

2016, Flocks et al., 2011, Lino and Reames, 2019). It is expected that census block groups with a 

higher percentage of their land use assigned as “residential low density” will have had a greater 

number of yard trees planted. This prediction is based on the expectation that individuals living 

in low density neighborhoods are more likely to be homeowners with more flexibility regarding 

changes to the property as well as more space and investment in their property’s appearance. 

Finally, it is hypothesized that census block groups with a higher percentage of their land zoned 
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as vacant will have received more trees. Considering that the Philadelphia Horticultural Society 

has been engaged in vacant lot greening during the period of TreePhilly’s program, it is 

expected that a spillover effect will result in greater awareness of city greening efforts in areas 

where these lots are greened, leading to higher number of yard tree requests in the residential 

properties in these areas.  

4.3 Visual Analysis 

 The number of trees per million square feet as well as the neighborhood characteristics 

corresponding to the various hypotheses were represented using choropleth maps. The maps 

visualized how these variables change across the Philadelphia census block groups. Correlations 

between the variables as well as the specific regions of the city in which they exist were 

identified by making connections between the maps which can be found in the appendix. 

4.4 Regression Analysis 

Three types of regression analysis were used to determine the relationship between 

yard trees and temperature and socioeconomic qualities of the census block groups: logistic 

regression, Ordinary Least Squares regression, and spatial autocorrelation regression. The 11 

dependent variables for the models were population, mean temperature, percentage of white 

residents, log(median household income), and the percentages of area assigned to the 7 

previously mentioned zoning classifications (residential low density, residential medium 

density, residential high density, commercial 1, commercial 2, park/open space, and vacant).  

For the logistic regression, the dependent variable is the binary outcome of having 

received at least one tree or not. This model provides a general understanding of what areas of 

the city were completely unengaged during the 9 years of the program. For the OLS model, the 
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dependent variable is the log(number of trees planted per square feet). This model gives insight 

into the variation in the number of trees planted in the neighborhoods that received trees.  

Considering the likelihood of the statistical relationship between the variables changing 

over space, spatial regression was employed to account for this phenomenon. To determine 

whether or not spatial patterns existed, this study utilized the Moran’s I statistic which tests the 

null hypothesis that the spatial pattern of a variable is random (Ord and Getis, 1995). A spatial 

contiguity weight matrix with equal weights assigned to all contiguous census block groups was 

used to model dependence. The Moran’s I statistic of 0.156 and corresponding Moran’s I z-

score of 8.89 rejected the null hypothesis and indicated spatial autocorrelation. Following 

LeSage’s (2014) principles to guide the process of choosing a spatial econometrics model, 

model selection was first determined by specifying the presence of either local or global 

spillovers. Because an important characteristic of global spillovers is their endogenous 

interaction and feedback causing a change in one region to cause a sequence of adjustments in 

potentially all regions in the sample, specifying the context as a local spillover situation was 

more reasonable. In other words, characteristics of a census block group are likely to affect 

neighboring census block groups but not create spillovers affecting all groups in the city. Given 

the local specification of the problem, the study began using the Spatial Durbin Error Model 

(SDEM):  Y = X · β + W X ·θ + u                      

where u = λ ·Wu + ε with parameters β for exogenous explanatory variables, θ for exogenous 

interaction effects (of dimension equal to the number of exogenous variables), λ for the spatial 

correlation effect of errors known as spatial autocorrelation, and W for the spatial weight 

matrix (LeSage and Pace, 2009). 
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This model is a combination of the Spatially Lagged X (SLX) model and Spatial Error 

model (SEM). All 3 models include spatial lag terms W for the explanatory variables which 

permits local spillovers to neighboring observations.  

The SLX model is written as Y = X · β +W X · θ +ε. It includes spatially lagged explanatory 

variables which is useful when the independent variables in one area affect the outcome in a 

neighboring area. The SEM is written as Y = X · β + u  where  u = λ · Wu + ε.  SEM considers the 

spatial autocorrelation of errors such as spatially correlated fixed effects or omitted variables 

with spatial patterns (LeSage and Pace, 2009). 

  A Likelihood ratio test and AIC values were used to decide whether to restrict the SDEM 

model to a SLX model or SEM. A Moran’s correlation test and Breusch-Pagan test for spatial 

models were used to check for spatial dependence of residuals of the regression models 

(Breusch and Pagan, 1979). 

 
5. Results 

5.1 Visual Analysis Results 

Univariate maps in Figure 1 (located in the appendix) indicate that relationships exist 

between the number of trees planted in each census block group and various independent 

variables in different regions of the city. The maps only include census block groups with a 

sizable enough population that demographic information was available for them in the ACS. 

Upper and Lower Far Northeast of Philadelphia, Upper and Lower Northwest Philadelphia, 

University/Southwest Philadelphia, Southwest River Wards, and South Philadelphia received 

the most yard trees per square feet. However, the mean temperature of the majority of the 

census block groups in these regions were comparable to the rest of the city. In fact, Lower Far 
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Northeast and University/Southwest Philadelphia already had cooler temperatures than the 

rest of the city at the beginning of the TreePhilly program. In the same vein, Upper and Lower 

Far Northeast and Upper and Lower Northwest and University/Southwest Philadelphia, where 

several trees were planted, were also the home to majority white residents, some of the 

highest incomes in the city, and most of the city’s land classified as residential low density. The 

Center City area in the north of South Philly (a region where a sizable number of trees were 

planted) had a high white population and high income. However, in general, South Philly had a 

more diverse population, lower median income, and little land assigned as residential low 

density.  

West, Central, Lower North, North, and Northeast Philadelphia, and Lower Southwest 

appeared to have received an overall lower number of trees. Some of these regions had a 

substantial group of census blocks groups with lower mean temperatures to begin with, but in 

general they had the largest minority populations, lower incomes, very little land zoned for low 

density residential properties, and several census block groups with higher percentages of 

vacant land. Census block groups on the eastern border of the city tended to receive very few 

yard trees despite their varying levels of their minority population and income. These census 

block groups also had greater amounts of land identified as vacant. Nevertheless, these census 

block groups also had slightly cooler mean temperatures than majority of the city at the start of 

the program, suggesting a slightly smaller need for yard trees. Overall, the visual analysis of the 

variables of interest pointed to a distribution of trees favoring non-minority, higher income, and 

single-family housing neighborhoods.  

5.2 Logistic Regression Results 
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The logistic regression was performed to identify relationships between the 

socioeconomic and zoning factors and whether a census block group received at least 1 tree or 

not. The results found in Table 2 indicate that the model had a pseudo-R-squared value of 

0.1529, suggesting that much of the variation in the probability of having received a tree is not 

explained by factors included in the model.  

Nevertheless, the model had 4 significant coefficients: population, the percentage of 

white residents, the percent of land zoned as residential low density, and the percentage of 

land zoned as commercial mixed residential. As expected, population and the number of trees 

were positively correlated, with an additional resident corresponding to a 1.3% increase in the 

odds of having a tree planted in a census block group. In terms of socioeconomic factors, a 1-

unit increase in the percentage of white residents of a census block group was found to 

increase the odds of having at least 1 yard tree planted by approximately 1.9%. Median income 

had no significant effect on the probability of receiving a tree. The absence of an effect could be 

the result of the model controlling for the white population in each census block group, given a 

62.5% correlation between the percentage of white residents and median income in the city.  

With regards to land use, an additional 1% in the amount of land zoned as residential 

low density increased the odds of receiving a yard tree by 9.62%. This effect is likely due to the 

fact that residential low density parcels tend to have larger single-family homes. Although the 

“commercial 2” (commercial mixed residential) classification had not been considered as part of 

the hypotheses, it had a significant reduction in the probability of receiving a tree. A 1-unit 

increase in the percentage of that land use decreased the odds of a yard tree being planted by 

11.75%. This effect could be a result of properties sharing the same space as businesses, 
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causing them to be in high street area of greater footfall and having smaller accommodations, 

making them better candidates for street trees over yard trees.  

Contrary to my hypothesis, the mean temperature of the census block group at the 

beginning of the TreePhilly program did not have a significant effect on the probability of a yard 

tree being planted. This result suggests that the Yard Tree program may be failing to address 

the urban heat island effect in Philadelphia.  

 

 

 

 

 

 

 

 

 

 

 

5.3 Ordinary Least Squares Regression Results 

The OLS regression provides more detail about the variation of number of trees planted 

for census block groups that received trees. Results of the regression are presented in Table 3 

where the outcome variable is the log of the number of trees planted per square feet. 

Dependent variables with statistically significant coefficients were population, the percentage 

of white residents, the percentage of land zoned as residential low density, the percentage of 

land zoned as residential medium density, and the percentage of land classified as commercial 

 

Table 2: Logistic Regression Summary 
Coefficients Estimate Std. Error P-value 

Intercept 3.234 3.137 0.305 
Population 0.0013 0.000 0.000 

Mean Temperature 0.0101 0.012 0.406 
Log (median income) -0.3764 0.302 0.213 

White 0.0188 0.006 0.002 
Residential Low 0.0919 0.0024 0.000 
Residential Med 0.0192 0.011 0.074 
Residential High -0.0161 0.015 0.270 

Commercial 1 -0.0180 0.021 0.389 
Commercial 2 -0.1249 0.038 0.001 

Park or Open Space -0.0048 0.012 0.698 
Vacant 0.0292 0.028 0.299 

Pseudo R-squared: 0.1529 
Log-Likelihood: -240.05  
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2 (commercial mixed residential). A 1-unit change in the percentage of white residents in a 

census block group approximately corresponded to a 1.45% increase the number of yard trees 

per square feet. As in the case of the logistic regression, median income was found to have no 

statistically significant effect on the number of residential trees received, which could be a 

result of the variable’s correlation with the proportion of white residents. A 1-unit increase in 

the percentage of land classified as residential low density and residential medium density 

corresponded to an approximate increase in the number of yard trees planted of 4.34% and 

3.20% respectively. These results align with the hypothesis that lower density residential 

neighborhoods which are likely to have more property space and be owner-occupied were 

likely to have a higher rate of tree requests. In the OLS regression, both the commercial 1 and 

commercial 2 variables were statistically significant at the 0.05 level. A 1-unit increase in the 

percentage of land classified as commercial business or professional corresponded to a 2.9% 

reduction in the number of yard trees, while a 1-unit increase in percentage of land classified as 

commercial mixed residential corresponded to an approximately 7.0% fall in the number of 

yard trees received, even after controlling for population differences. As previously mentioned, 

census block groups with greater amounts of land classified as commercial are more likely to 

have smaller residential properties which could have resulted in less interest in requesting a 

yard tree. 

The OLS regression had an adjusted r-squared of 0.1029, indicating that a majority of 

the variation in the number of trees per square feet are not explained by the variables included 

in the model. The Moran’s correlation test to check for residual spatial dependence of the 
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model resulted in a Moran’s I of 0.971, with a corresponding statistic of 5.77 and significant p-

value, indicating clustering among residuals.   

 

 

 

 

 

 

 

5.4 Spatial Regression Results 

The first spatial regression run was the Spatial Durbin Error model (SDEM) with a 

pseudo-R2 of 0.149. As seen in the results presented in Table 4, the model had 5 significant 

coefficients: population, percentage of white residents, percentage of land classified as 

residential low density and residential medium density as well as the lag of the percentage of 

land classified as commercial mixed residential. It is important to note that the coefficients of 

the SDEM cannot be interpreted at face value and requires specialized software to produce 

estimates and valid t-statistics because of a global diffusion of shocks from changes to variables 

in one census block group (LeSage, 2014). The model’s statistically significant positive lambda 

value signifies that the residual for a census block group increases with higher unexplained 

values for the number of trees planted in a neighboring census block group.  

 

Table 3: OLS Regression Summary 
Coefficients Estimate Std. Error P- value 

Intercept -13.760 1.9963 8.87e-12 
Population 0.00044 0.00014 0.00142 

Mean Temperature 0.00955 0.00884 0.28031 
Log (median income) -0.18871 0.18876 0.31763 

White 0.01440 0.00311 4.14e-6 
Residential Low 0.04248 0.00772 3.67e-10 
Residential Med 0.03146 0.00690 5.74e-6 
Residential High -0.00175 0.01072 0.87025 
Commercial 1 -0.02973 0.01515 0.04994 
Commercial 2 -0.07248 0.03252 0.02603 

Park or Open Space -0.00992 0.00914 0.27825 
Vacant 0.02276 0.01721 0.18633 

Multiple R-spared: 0.1111      Adj R-squared: 0.1029 
F-statistic: 13.52                    p-value: <2.2e-16  



21 
 

 

 

 

 

 

 

 

 

 

 

 

The SDEM model was restricted to 2 interpretable smaller spatial models: the Spatially 

Lagged X (SLX) model and the Spatial Error Model (SEM), and their corresponding results are 

shown in Table 5 and 6 respectively. The SLX model had an adjusted R-squared of 0.1098 and 5 

significant coefficients. The population, the percentage of white residents and the percentage 

of land classified as residential low density and residential medium density were all significant 

as in previous models. Additionally, the spatial lag of the percentage of land classified as 

commercial mixed residential was also significant. A 1-unit increase in the percentage of 

 

Table 4: Spatial Durbin Error Model Summary 
Coefficients Estimate Std. Error P-value 

Intercept -13.3747 2.9255 4.83e-6 
Population 0.00050 0.00014 0.0004 

Mean Temperature -0.00047 0.23677 0.9839 
Log (median income) -0.19042 0.20048 0.3422 

White 0.01615 0.00600 0.0071 
Residential Low 0.03773 0.00865 1.28e-5 
Residential Med 0.02456 0.00741 9.21e-4 
Residential High 0.00144 0.01126 0.8981 

Commercial 1 -0.02519 0.01516 0.0966 
Commercial 2 -0.02626 0.03519 0.4556 

Park or Open Space -0.01002 0.00929 0.2811 
Vacant 0.01735 0.01866 0.3524 

Lag Population -0.00032 0.00029 0.2711 
Lag Mean Temperature 0.01374 0.02779 0.6211 

Lag Log (median income) 0.03892 0.25047 0.8765 
Lag White 0.00046 0.00716 0.9485 

Lag Residential Low -0.00521 0.01370 0.7035 
Lag Residential Med -0.00041 0.01389 0.9765 
Lag Residential High -0.01370 0.00245 0.5770 

Lag Commercial 1 -0.04260 0.00302 0.1593 
Lag Commercial 2 -0.18325 0.07094 0.0098 

Lag Park or Open Space -0.02116 0.01785 0.2360 
Lag Vacant -0.01163 0.03254 0.7208 
LAMBDA 0.2120  2.98e-6 

Log likelihood: -2851.30 
AIC: 5752.6 
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commercial mixed residential land use in neighboring census block groups corresponded to an 

18.8% decrease in the number of trees planted in a census block group.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: Spatially Lagged X Model Summary 
Coefficients Estimate Std. Error P-value 

Intercept -14.0467 2.65243 1.41e-7 
Population 0.00050 0.00015 0.0007 

Mean Temperature -0.00219 0.02418 0.9276 
Log (median income) -0.15899 0.20244 0.4323 

White 0.01406 0.00636 0.0272 
Residential Low 0.03838 0.00907 2.53e-5 
Residential Med 0.02414 0.00770 0.0017 
Residential High 0.00285 0.11702 0.8072 

Commercial 1 -0.02374 0.01552 0.1270 
Commercial 2 -0.02152 0.03674 0.5581 

Park or Open Space -0.00973 0.00959 0.3107 
Vacant 0.01865 0.01951 0.3394 

Lag Population -0.00036 0.00027 0.1813 
Lag Mean Temperature 0.01256 0.02767 0.6499 

Lag Log (median income) 0.08633 0.24370 0.7232 
Lag White 0.00288 0.00727 0.6913 

Lag Residential Low -0.00853 0.01323 0.5192 
Lag Residential Med -0.00104 0.01322 0.9371 
Lag Residential High -0.01854 0.02321 0.4244 

Lag Commercial 1 -0.05151 0.02891 0.0751 
Lag Commercial 2 -0.20852 0.67656 0.0021 

Lag Park or Open Space -0.02497 0.01717 0.1461 
Lag Vacant -0.01109 0.03141 0.7239 

Multiple R-spared: 0.1261      Adj R-squared: 0.1098 
F-statistic: 7.734                   p-value: <2.2e-16  
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Two likelihood ratio tests for spatial models were conducted to decide if the SDEM 

should be restricted to an SLX or SEM model. The test comparing the SDEM and SLX model 

produced a likelihood ratio of 21.824 and p-value of 2.988e10-6, rejecting the null hypothesis 

that the SLX model provides as good a fit for the data as the SDEM. On the other hand, the test 

comparing the SDEM and the SEM produced a likelihood ratio of 13.148 and p-value of 0.2838, 

failing to reject the null hypothesis at the 0.05 level. For that reason, the lag errors were 

retained, and the SEM was chosen as the final model. The selection of the SEM was also 

confirmed by a comparison of AIC values, with the SEM having a smaller AIC of 5743.8 as 

opposed to the SDEM’s AIC of 5752.6.  A Breusch-Pagan test for spatial models was run for both 

models to check for spatial heteroscedasticity. Both test results rejected the null hypothesis 

that spatial error variances were equal. Although the heteroscedasticity could have some affect 

on the standard errors of the models, all p-values for the significant coefficients of the SEM 

 

Table 6: Spatial Error Model Summary 
Coefficients Estimate Std. Error P-value 

Intercept -13.4057 2.1174 2.43e-10 
Population 0.00049 0.00014 0.00040 

Mean Temperature 0.00833 0.01073 0.43726 
Log (median income) -0.22206 0.19497 0.25472 

White 0.01435 0.00355 5.45e-5 
Residential Low 0.04229 0.00718 3.91e-9 
Residential Med 0.03018 0.00708 2.01e-5 
Residential High -0.00005 0.01090 0.99642 

Commercial 1 -0.02563 0.01506 0.08874 
Commercial 2 -0.05066 0.03353 0.13084 

Park or Open Space -0.00799 0.00920 0.38478 
Vacant 0.02019 0.01782 0.25737 

LAMBDA 0.2427  6.64e-8 
Pseudo R-squared: 0.1421 

Log likelihood: -2857.88 
AIC: 5743.8 
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model were very small, so it is not expected to significantly affect the confidence levels of the 

estimates.   

 

The final model selected, SEM, had a pseudo R-squared value of 0.142 and 4 significant 

coefficients. As expected, the population of a census block group was significantly positively 

correlated with the number of trees planted. The final model found that a 1-unit increase in the 

percentage of white residents in a census block group corresponded to an 1.4% increase in the 

number of yard trees received, suggesting that areas with larger minority populations were less 

likely to benefit from the program. The model also found that a 1-unit increase in the 

percentage of land zoned as residential low density and residential medium density in a census 

block group corresponded to an increase in the number of trees planted of 4.3% and 3.1% 

respectively. These results reveal that residents living in single-family homes or condominiums 

and larger properties were more likely to take advantage of the program. As in previous 

models, mean temperature was found to have no significant effect on the number of trees 

planted, which implies that the program’s is not being used to combat urban heating inequities 

in Philadelphia. Finally, the SEM had a positive significant lambda of 0.2427, indicating that 
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higher unexplained values for the number of trees received in a neighboring census block group 

corresponds to a larger residual for a census block group and that the factors affecting tree 

distribution are spatially clustered.  

 

6. Discussion and Conclusion 

This study evaluated the equity of the tree distribution of Philadelphia’s Yard Tree 

program run by TreePhilly, The assessment focuses on the program’s ability to counteract the 

urban heat island effect based on land surface temperatures calculated using Landsat 8 satellite 

imagery as well zoning specifications from the City of Philadelphia’s Land Use data, and 

socioeconomic characteristics from the American Community Survey on the census block group 

level. Disparities were identified using mapping, regression analysis, and spatial econometric 

models to determine the relationships between tree distribution and important factors such as 

temperature, race, income, and property characteristics. Overall, the study found that yard tree 

distribution was not equitable with regards to addressing urban heat differences because the 

results indicated no relationship between LST and the number of trees planted. The 

neighborhoods that benefited the most relative to their size were Upper and Lower Far 

Northeast of Philadelphia, Upper and Lower Northwest Philadelphia, University/Southwest 

Philadelphia, Southwest River Wards, and South Philadelphia. Meanwhile, West, Central, Lower 

North, North, and Northeast Philadelphia, and Lower Southwest received fewer trees per 

square feet.  

The analysis also concluded that on average census block groups that received more 

trees also had larger white populations and more area zoned for residential low density and 
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residential medium density properties. These findings align with the hypothesis that minority 

populations who have been historically marginalized and received less access to information 

and resources would be less likely to benefit from the yard tree program. Additionally, census 

block groups with more land classified as residential low density were expected to receive more 

trees because of their larger property space and the higher probability of being occupied by 

homeowners with greater long-term investment in their property, its comfortability, and its 

appearance. On the other hand, census block groups with more area zoned as commercial 

mixed residential were more likely to receive no trees. This outcome could be due to their 

smaller property sizes and locations on high streets with greater footfall, making them better 

candidates for street trees over yard trees. Contrary to the hypotheses, the median income of 

the residents did not have an effect on the number of trees received. However, this result could 

stem from the correlations between median income, race, and zoning specifications. The 

results also refuted the hypothesis that areas with more vacant land would receive more trees 

as a spillover effect of the Horticultural Society’s greening program for vacant lots. Altogether, 

the study suggests that the first 9 years of the TreePhilly yard tree program has faced several 

social justice challenges with regards to equitable tree distribution. 

 The findings of this research have several implications for the City of Philadelphia as it 

further pursues greening efforts and completes the first decade of its residential tree program. 

Currently, a major component of the program is based on residents’ requests for trees. 

However, the local government will have to make a more conscious effort to target outreach in 

specific areas of greater need or that are less likely to request a tree. Firstly, it would serve 

TreePhilly to identify Philadelphia hotspots to offer more attention to these areas, considering 
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that there was no relationship found between land surface temperatures and trees planted per 

square feet. These efforts will better the program’s ability to contribute to city cooling 

endeavors and reduce urban heat island effects. Secondly, as most trees are being planted in 

lower density residential areas, it will be helpful for the City to raise awareness about the 

program amongst high-density and commercial mixed residential neighborhoods which may 

not consider themselves as ideal candidates for the program. One possible strategy could be 

communicating the benefits of the program to landlords seeing as their tenants will be more 

reluctant to request a tree for a property that he or she does not own. For properties that lack 

the space for yard trees, TreePhilly should be intentional about street tree planting in these 

neighborhoods.  

 To address the racial inequities of the tree distribution, Tree Philly should increase 

efforts to circulate information about the yard tree programs amongst minority groups, 

possibly through cultural groups and community centers in the city. Although the study found 

that median income did not have a significant relationship on the number of trees planted, the 

economic barriers of maintaining yard trees should not be underestimated, and TreePhilly 

should consider services to ease economic burdens in low-income areas that request trees. 

Finally, the Philadelphia Horticultural Society can facilitate in increasing tree requests by 

informing households in the neighborhoods of the vacant lots that it greens about TreePhilly’s 

program, creating a spillover effect that would boost the administration’s greening efforts.  

 

7. Limitations and Future Improvements 
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This study demonstrates how spatial statistic models can be useful tools in evaluating 

tree distribution programs. The methodology can be expanded to assess the equity of various 

city programs and better gauge the social justice challenges that they face. Nevertheless, future 

research can make improvements to develop models that are better representations of 

relationships between the variables investigated. For example, considering that results of 

spatial models are sensitive to the spatial weight matrix, future research can determine which 

weight matrix specifications best fits the Philadelphia context and study how robust results are 

to the different weight matrix options (LeSage, 2014). Specifying a weight matrix with a more 

nuanced definition of the spatial neighbors of each census block group could help build models 

with coefficients that describe the effects of the variables of interest more accurately. 

Furthermore, considering the consistency of spatial heteroscedasticity, future studies can 

consider employing a geographically weighted model to account for non-stationarity in the 

statistical relationships (Brundson et al., 1996).  

A second limitation of the research was the lack of granularity of data analysis. The 

study’s land surface temperatures is based on one snapshot in time near the beginning of the 

program and the number of trees planted is aggregated from 2012 to 2021. Considering that 

TreePhilly includes data about when each tree was planted, it might be useful to explore the 

tree distribution over time to determine if the equity of the program has changed alongside the 

socioeconomic factors from year to year and discover spatial trends over the 9-year period of 

the program. Another worthwhile development would be an investigation of the relationship 

between temperature and tree planting by observing the changes in temperatures after a yard 

tree has been planted. This further study would provide more detail about how successful the 
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yard tree program is in ameliorating the UHI effect, but it would require higher resolution 

imagery as well as data including the specific time each tree was planted. 

 Finally, this research was hindered by some limitations of the data available. Tree 

Planting data collected by TreePhilly does not include updates on the status of the tree, so 

information about the tree’s maintenance is unknown. As a result, the connections made 

between urban cooling and the residential tree program assume that the trees planted still 

exist. There is also no information about households that may have requested a tree but did 

not receive one. Philadelphia’s database also did not maintain information about what street 

trees were planted during the same period of the TreePhilly program, so the study was unable 

to investigate the relationship between street tree plantings and residential tree plantings.  

Additionally, the manner in which type of properties are defined could also have affected 

results of land classification’s effect on number of trees planted. For example, The Department 

of Planning and Development includes hotels, motels, and correctional facilities as types of 

properties under “residential high density”. Ideally, these parcels would be identified and 

dropped from the larger classification group to focus on conventional residential properties. 

 With the increasing amount of attention to data collection and maintenance, future 

research can conduct a richer, more nuanced study addressing these limitations to better 

understand the environmental justice situation and implications of the City of Philadelphia’s 

greening efforts. 
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Appendix 

Figure 1: Univariate Maps of Variables of Interest 
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